Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Braz. J. Pharm. Sci. (Online) ; 58: e20081, 2022. graf
Article in English | LILACS | ID: biblio-1403733

ABSTRACT

Abstract Caveolin, the protein of the caveolar membrane, interacts and binds with endothelial nitric oxide synthase (eNOS), forming a caveolin-eNOS complex leading to suppression of the eNOS activity. Caveolin, therefore, maintains eNOS in the inactivated state leading to reduced nitric oxide (NO) production. Ischemic preconditioning disrupts the caveolin-eNOS complex leading to activation of the eNOS and thus results in cardioprotection. During ischemic preconditioning, NO produces cardioprotection by the opening of the KATP channel, and the caveolin forms a suitable signalling platform facilitating the interaction of NO with the KATP channel. Estrogen deficiency has been reported to upregulate caveolin-1 expression. The article aims to review the various mechanisms that placed the women at the risk of coronary artery diseases after postmenopausal estrogen deficiency and their role in the cardioprotective effect of ischemic preconditioning.


Subject(s)
Role , Women , Coronary Artery Disease/complications , Postmenopause/metabolism , Caveolins/analysis , Ischemic Preconditioning/adverse effects , Nitric Oxide
2.
Braz. J. Pharm. Sci. (Online) ; 58: e19254, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1374532

ABSTRACT

Abstract Ischemic postconditioning (IPTC) brings cardioprotection endogenously, Atrial natriuretic peptide (ANP) produces the same effect. It happens due to down expression of endothelial nitric oxide synthase (eNOS). Thus, experimental protocol associating IPTC has been formulated to find the role of ANP in the cardioprotection of heart in OVX rats. For this experiment, heart was isolated from OVX rat and held tightly on Langendorff's apparatus in a manner that ischemia of 30 min and reperfusion of 120 min were also given. Simultaneously, IPTC with four cycles of 5 min ischemia and 5 min reperfusion of each was applied. Parameters like size of myocardial infarct, levels of lactate dehydrogenase (LDH) and release of creatine kinase- MB (CK-MB) in coronary effluent were noted after each stage of experiment for ensuring the extent of myocardial injury. Some significant changes were also seen in the histopathology of cardiovascular tissues. The cardio-protection has been made by four cycles of IPTC. It was confirmed by decline in the size of myocardial infarct. It diminishes the release of LDH and CK-MB in heart of OVX rat. Thus, IPTC induces cardio-protection in the isolated heart from OVX rat. Perfusion of ANP associating with IPTC favors the cardioprotection which is further confirmed by rise in the NO release and heart rate. The level of myocardial damage changes using IPTC, IPTC+OVX, IPTC+OVX+ANP, IPTC+ OVX+ANP+L-NAME and other groups were observed significantly and were found to be less than those in I/R control group. Thus, it is recommended that ANP involving IPTC restores attenuated cardio-protection in OVX rat heart. Therefore, Post-conditioning is useful in various clinical aspects.

3.
Braz. J. Pharm. Sci. (Online) ; 58: e19224, 2022. graf
Article in English | LILACS | ID: biblio-1383989

ABSTRACT

Abstract Ischemic heart disease is the leading cause of death in postmenopausal women. The activity of heart ACE increases whereas the activity of ACE-2 decreases after menopause. The present study was designed to investigate the role of ACE and ACE-2 in the abrogated cardioprotective effect of IPC in OVX rat heart. The heart was isolated from OVX rat and mounted on Langendorff's apparatus for giving intermittent cycles of IPC. The infarct size was estimated using TTC stain, and coronary effluent was analyzed for LDH, CK-MB, and nitrite release. IPC induced cardioprotection was significantly attenuated in the ovariectomized rat heart as compared to the normal rat heart. However, this attenuated cardioprotection was significantly restored by perfusion of DIZE, an ACE-2 activator, and captopril, an ACE inhibitor, alone or in combination noted in terms of decrease in myocardial infarct size, the release of LDH and CK-MB, and also increase in the release of NO as compared to untreated OVX rat heart. Thus, it is suggested that DIZE and captopril, alone or in combination restore the attenuated cardioprotective effect of IPC in OVX rat heart which is due to an increase in ACE-2 activity and decrease in ACE activity after treatment.


Subject(s)
Animals , Female , Rats , Ovariectomy/classification , Myocardial Ischemia , Heart/physiopathology , Infarction/pathology , Myocardial Infarction/pathology , Women , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Captopril/pharmacology
4.
Article | IMSEAR | ID: sea-205044

ABSTRACT

Excessive level of Homocysteine (Hcy) is considered a neurotoxin since it has a very deleterious effect on the nervous system. It is a sulfur-containing amino acid that is reversibly formed and secreted during metabolism. Preclinically and clinically, Hcy exhibits several neurological mechanisms that have been reported in the pathogenesis of Alzheimer’s disease, stroke, Parkinson’s disease, multiple sclerosis, epilepsy, neuronal cell death, and amyotrophic lateral sclerosis. Homocysteine may promote Alzheimer’s disease by more than one mechanism, including oxidative stress, neuronal cell damage, tau phosphorylation, enhancement of beta-amyloid aggregation, and hyperactivation of NMDA receptor. Moreover, it increases the production of chemokines by stimulation of nuclear factor-kappa B. It is well known that the use of levodopa diminishes the symptoms of Parkinson’s disease but also lead to an elevation in the level of homocysteine. In this review, we highlight the associate relationship between hyperhomocysteinemia and neurological disorders by discussing its neurodegenerative effects.

SELECTION OF CITATIONS
SEARCH DETAIL